Dersin Adı Ders Kodu Yarıyılı Teori
(Saat/Hafta)
Uygulama
(Saat/Hafta)
Akts
DİFERANSİYEL DENKLEMLER MAT211 3 3 0 5,0
Önkoşul(lar)-var ise
Dersin Dili
Dersin Türü Lisans
Dersin sorumlusu(ları) Dr. Öğr. Üyesi VİLDAN YAZICI
Dersin Amacı Öğrencinin, diferansiyel denklemler ile ilgili matematik bilgisi ve bu bilgiyi karşılaşacağı matematiksel problemlerde kullanma becerisini kazanması.
Dersin Verilme Şekli Örgün
Sıra No Dersin Öğrenme Çıktıları Öğretim Yöntemleri Değerlendirme Yöntemleri Program Yeterliliklerini Karşılama Düzeyi(1)(2)(3)(4)(5)
1 Express the fundamental concepts of differential equations.
1 Diferansiyel denklemi tanımlar. Anlatım Kısa cevaplı sorular 2, 3, 14
2 Değişkenlerine ayrılabilen, homojen, lineer, tam diferansiyel denklem çeşitlerini çözer. Anlatım, Soru-cevap, Problem Çözme, Gösterip Yaptırma Sınav, Kısa Sınav, Kısa cevaplı sorular 2, 3, 14
2 Solve separable, homogeneous, linear, and exact differential equations.
3 Solve Bernoulli and Riccati differential equations.
3 Bernoulli ve Riccati diferansiyel denklemlerini çözer. Anlatım, Soru-cevap, Problem Çözme, Gösterip Yaptırma Sınav, Kısa Sınav, Kısa cevaplı sorular 2, 3, 14
4 İkinci ve yüksek mertebeden sabit katsayılı lineer diferansiyel denklemleri çözer. Anlatım, Soru-cevap, Problem Çözme, Gösterip Yaptırma Sınav, Kısa Sınav, Kısa cevaplı sorular 2, 3, 14
4 Solve second and higher-order linear differential equations with constant coefficients.
5 Explain the method of variation of parameters.
5 Parametrelerin değişimi yöntemini ifade eder ve bu yöntemle problem çözer. Anlatım, Soru-cevap, Problem Çözme, Gösterip Yaptırma Sınav, Kısa Sınav, Kısa cevaplı sorular 2, 3, 14
6 Değişken katsayılı diferansiyel denklemleri tanımlar ve bazı değişken katsayılı diferansiyel denklemleri çözer. Anlatım, Soru-cevap, Problem Çözme, Gösterip Yaptırma Sınav, Kısa Sınav, Kısa cevaplı sorular 2, 3, 14
6 Define variable coefficient differential equations and solve some variable coefficient differential equations.
7 Solve systems of differential equations.
7 Diferansiyel denklem sistemlerini çözer. Anlatım, Soru-cevap, Problem Çözme, Gösterip Yaptırma Sınav, Kısa Sınav, Kısa cevaplı sorular 2, 3, 14
8 Laplace dönüşümleri yardımıyla diferansiyel denklemleri çözer. Anlatım, Soru-cevap, Problem Çözme, Gösterip Yaptırma Sınav, Kısa Sınav, Kısa cevaplı sorular 2, 3, 14
8 Solve differential equations using Laplace transformations.
9
9
10
10
11
11
12
12
13
13
14
14
15
15
Dersin İçeriği
Bu ders, diferansiyel denklemlerle ilgili temel kavramlar ve modeller, birinci mertebeden diferansiyel denklemler, değişkenlerine ayrılabilen, homojen, Lineer, Bernoulli ve Riccati diferansiyel denklemleri, tam diferansiyel denklemler ve integrasyon çarpanı, birinci mertebeden yüksek dereceden denklemler, yüksek mertebeden diferansiyel denklemler, sabit katsayılı yüksek mertebeden diferansiyel denklemler, parametrelerin değişimi yöntemi ve değişken katsayılı diferansiyel denklemler, diferansiyel denklem sistemleri, laplace dönüşümlerini kapsar.
Kaynaklar
1- Arastunoğlu Kasımzade, A., Mühendislikte Diferensiyel Denklemler, Nobel Akademik Yayıncılık 2- Bronson, R., COSTA, G.B., Diferensiyel Denklemler - Schaum's, Nobel Akademik Yayıncılık 3- Nagle, R.K., Saff, E.B., Snider, A.D., Diferensiyel Denklemlerin Temelleri - Fundamentals of Differential Equations, Pearson, Nobel Akademik Yayıncılık
Haftalara Göre İşlenecek Konular
Haftalar Konular Dokümanlar
1 . Hafta Diferansiyel denklemlerle ilgili temel kavramlar ve modeller Teori
1 . Hafta Basic concepts and models related to differential equations Theory
2 . Hafta Separable and homogeneous differential equations Theory, Practice
2 . Hafta Değişkenlerine ayrılabilen ve homojen diferansiyel denklemler Teori, Pratik
3 . Hafta Lineer ve Bernoulli diferansiyel denklemler Teori, Pratik
3 . Hafta Linear and Bernoulli differential equations Theory, Practice
4 . Hafta Riccati and exact differential equations Theory, Practice
4 . Hafta Riccati ve Tam diferansiyel denklemler Teori, Pratik
5 . Hafta Integrasyon çarpanı Teori, Pratik
5 . Hafta Integration factor Theory, Practice
6 . Hafta First-order higher-degree differential equations Theory, Practice
6 . Hafta Birinci mertebeden yüksek dereceden denklemler Teori, Pratik
7 . Hafta Yüksek mertebeden diferansiyel denklemler Teori, Pratik
7 . Hafta Higher-order differential equations Theory, Practice
8 . Hafta Midterm Exam
8 . Hafta Ara sınav (Vize)
9 . Hafta Sabit katsayılı yüksek mertebeden diferansiyel denklemler Teori, Pratik
9 . Hafta Constant coefficient differential equations Theory, Practice
10 . Hafta Method of variation of parameters Theory, Practice
10 . Hafta Parametrelerin değişimi yöntemi Teori, Pratik
11 . Hafta Değişken katsayılı diferansiyel denklemler Teori, Pratik
11 . Hafta Variable coefficient differential equations Theory, Practice
12 . Hafta Systems of differential equations Theory, Practice
12 . Hafta Diferansiyel Denklem Sistemleri Teori, Pratik
13 . Hafta Diferansiyel Denklem Sistemleri Teori, Pratik
13 . Hafta Systems of differential equations Theory, Practice
14 . Hafta Laplace transformations Theory, Practice
14 . Hafta Laplace Dönüşümleri Teori, Pratik
15 . Hafta Laplace Dönüşümleri Teori, Pratik
15 . Hafta Laplace transformations Theory, Practice
16 . Hafta Final sınavı
Değerlendirme Sistemi
Yarıyıl içi çalışmaları Sayısı Katkı Payı (%)
Ara sınav (Vize) 1 40
Kısa Sınav 0 0
Final sınavı 0 0
0 0
0 0
0 0
1 40
0 0
0 0
2 10
1 10
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
Toplam 100
Yarıyıl İçi Çalışmalarının Başarı Notuna Katkısı 3 40
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı 1 0
Toplam 100
AKTS (Öğrenci İş Yükü) Tablosu
Etkinlikler Sayısı Süresi Toplam İş Yükü
Ders Süresi (hafta sayısı* haftalık toplam ders saati) 1 2 2
Sınıf Dışı Ders Calışma Süresi (Ön çalışma, pekiştirme) 0 0 0
Ara Sınav 0 0 0
Kısa Sınav 0 0 0
Yarıyıl Sonu Sınavı (Final) 0 0 0
0 0 0
0 0 0
0 0 0
1 2 2
0 0 0
0 0 0
2 2 4
1 16 16
0 0 0
0 0 0
0 0 0
0 0 0
14 3 42
7 2 14
7 2 14
14 3 42
0 0 0
Toplam İş Yükü 136
Dersin Öğrenme Çıktılarının Program Yeterlilikleri İle İlişkilendirilmesi
Sıra No Program Yeterlilikleri Katkı Düzeyi*
1 2 3 4 5
1 A computer engineer possesses fundamental applied and conceptual knowledge in the field of computer engineering. X
2 They utilize mathematics, natural sciences, and theoretical and applied knowledge in computer engineering to solve engineering problems. X
3 They identify current engineering problems in various application domains and provide feasible recommendations for their solution using computer systems. X
4 They perform analyses of software or hardware-based systems, components, and processes required for problem-solving and create optimal designs that meet specified requirements and constraints. X
5 They select and implement modern methods and tools necessary for engineering applications. X
6 Problemlerin çözümü için gerekli olan veriyi toplar ve işler, deneyler tasarlar, deneyleri gerçekleştirir ve sonuçlarını yorumlar. X
7 Mühendislik projelerinin yönetim süreçlerini bilir, proje için en uygun yönetim araçlarını ve proje yaşam döngüsünü seçer ve uygular. X
8 They code, test, operate, and maintain computer-based systems. X
9 They work effectively in interdisciplinary research and software development teams, both within and outside their own field. X
10 They keep up with current developments in computer engineering and related areas with a consciousness of the necessity of continuous professional development. X
11 They utilize Turkish and English fluently and effectively for tracking scientific and technical resources, presenting projects, and writing academic publications. X
12 They are aware of the legal consequences of information technology applications and the individual, corporate, social, and universal impacts. X
13 Geliştirdiği yazılım ve sistemlerde mesleki ve etik sorumluk bilinciyle hareket eder. X
14 They design and develop computer systems that will facilitate human life or increase comfort with analytical thinking skills. X
15 They possess awareness as an individual who is informed about current and historical events and can interpret them rationally and draw conclusions. X